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John Sosa, Pavel Sul, and Lawrence Small,
MIPAR Software, Worthington, Ohio

Advances in software algorithms and design enable automation of 

microstructure image analysis, leading to cost savings, reduction 

in measurement variability, and access to important metrics.
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Fig. 1 — (a) Original BSE image; (b) outline of automatically identified grains (red) on original 
image.

(a) (b)

EBSD is often used purely for grain size 
analysis[3], primarily when prior at-
tempts to identify grains using SE and 
BSE imaging have failed. While EBSD 
can accurately report grain size, short-
comings of the technique include:
•	 Time intensive: EBSD collection time 

of a single field-of-view commonly 
ranges from two to eight hours. 
High-speed cameras reduce collec-
tion time in some applications, but 
cameras are expensive and even 
more sensitive to sample prepara-
tion and material composition.

•	 Limited resolution: The nature of the 
electron beam/sample interaction 
in traditional SEM imaging versus 
EBSD typically means that SEM im-
aging can resolve smaller features 
than EBSD.

•	 Tedious sample preparation: To 
produce useful data using EBSD, 
samples must be relatively free of 
internal strain and their surfaces 
meticulously polished to a mirror 
finish with extreme care taken at 
each step.

CASE STUDY: REPLACING 
EBSD FOR GRAIN SIZE 
ANALYSIS

A manufacturer wanted to replace 
EBSD grain size measurement with au-
tomated BSE SEM image analysis. Fig-
ure 1(a) shows an example image of 
the microstructure of interest. Even 
with optimal sample preparation, sev-
eral software solutions failed to detect 
the microstructure’s BSE-imaged grain 
boundaries with acceptable accuracy. 
BSE imaging provides an incomplete 

representation of the microstructure’s 
grain boundaries (Fig. 1a).

Experienced metallographers can 
mentally connect the dots to delineate 
each grain, but the task can be very 
difficult to automate. In this case, the 
need to connect the dots, together with 
the faint contrast exhibited by visible 
boundaries were the primary challeng-
es that previous automated solutions 
failed to overcome. Recognizing that 
manual grain analysis from SEM images 
is no longer feasible nor acceptable, the 
company was forced to continue with 
EBSD for automated grain sizing.

The company worked with Mipar 
Software to pursue automated BSE 
grain size analysis. A promising auto-
mated solution was quickly developed 
including an adaptive feature detection 
capability that captures subtle bound-
ary contrast, and a “separate features” 
function, which mimics human in-
terpretation to complete the partial-
ly revealed grain structure. Figure 1(b) 
shows an outline of the automatically 
identified grains on the original image.

VALIDATION
To complement the grain detec-

tion in Fig. 1(b), Mipar wanted to quan-
tify the accuracy with which grain size 
could be measured from BSE imaging. 
Figure 2 compares the raw images, grain 
detections, and grain size distributions 
extracted from BSE and EBSD images. 
Table 1 compares grain size statistics 
 from each method, where statistics and 
distributions were produced by collect-
ing measurements from four random 
fields of view. Edge grains were exclud-
ed from measurement in each method.

Micrograph analysis and character-
ization is a key function of many 
materials laboratories support-

ing manufacturing, quality control, and 
R&D. While classic methods are subjec-
tive and resource intensive, advance-
ments in capture technology along with 
novel approaches to computer algorithm 
development enable automated tech-
niques not possible previously. This arti-
cle discusses the benefits of automated 
micrograph characterization in scanning 
electron microscopy (SEM), the necessity 
of image-based analysis in particle char-
acterization, and challenges in moderniz-
ing industry standards.

ALTERNATIVES TO EBSD FOR 
GRAIN SIZE MEASUREMENT

Grain size is a critical microstruc-
tural parameter that directly influenc-
es the mechanical properties of nearly 
all structural materials. Accurate quan-
tification of a material’s average grain 
size and distribution is therefore of 
paramount importance, as inaccurate 
measurements can lead to poor quali-
ty control, inaccurate property predic-
tions, and inefficient R&D cycles.

Etching procedures do not suffi-
ciently reveal grain boundaries for opti-
cal microscopy in some microstructures 
and grains are too small to be optically 
imaged in others. In both cases, SEM is 
often enlisted to image grains. However, 
the two common SEM imaging modes, 
i.e., secondary electron (SE) and back-
scattered electron (BSE) imaging, can 
produce less grain contrast than optical 
microscopy, even with proper sample 
preparation. In these cases, electron 
backscatter diffraction (EBSD)[1] has 
historically been the go-to technique 
for identifying discrete grains for auto-
mated analysis. With EBSD, the crystal 
structure and orientation of each pix-
el are determined, and these data are 
subsequently processed to reveal the 
material’s grain structure.

EBSD LIMITATIONS
In some applications, grain orien-

tation data are used to report crystal-
lographic texture in addition to grain 
size[2]. For this purpose, EBSD is typical-
ly an irreplaceable technique. However, 
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Figure 2 and Table 1 show strong 
agreement between grain size distribu-
tions and summary statistics. BSE mean 
grain size deviated from that of EBSD by 
only 2.7%. The standard deviations also 
show close agreement, but were not 
strongly considered in the comparison 
because they, together with maximum 
and minimum values, are more depen-
dent on the particular fields imaged. 

A more thorough sampling is required 
to properly compare standard devia-
tion as well as minimum and maximum 
statistics between the two. Most im-
portantly, a 97.3% agreement between 
BSE and EBSD mean grain size delivers 
confidence in the ability to accurately 
and automatically perform grain size 
analysis from BSE images of the chal-
lenging microstructure.

IMPLICATIONS
Accurate grain size measurement 

via BSE imaging rather than EBSD offers 
substantial cost savings and enhanced 
throughput. Table 2 presents an ap-
proximate breakdown of time and ser-
vice cost associated with each method. 
Mipar’s analysis time of five seconds per 
image was considered negligible, and is 
thus excluded from the cost breakdown.

The true cost of grain size data ac-
quisition is more complicated than indi-
cated in Table 2 and likely varies among 
companies. However, it is not unreason-
able to estimate that BSE imaging can 
offer savings in the thousands of dol-
lars per sample compared with EBSD. 
Moreover, BSE imaging can conserva-
tively offer 100 times the throughput of 
EBSD. Thus, while BSE imaging today 
could potentially process 240 samples 
in 24 hours with a direct cost of $4800, 
EBSD would require about four months 
to process the same volume, with a di-
rect cost of $576,000.

These benefits have been recog-
nized for some time, but the challeng-
es associated with automating grain 
detection from real-world SEM images 
forced engineers to resort to EBSD for 
grain sizing, despite the substantially 
higher cost. The ability to successful-
ly overcome these challenges enabled 
Mipar software users to move to BSE 
grain sizing with significant cost savings 
and to process samples with greatly in-
creased efficiency.

OVERCOMING MEASUREMENT 
LIMITATIONS

Powder and loose aggregate ma-
terials are used in many engineering 
applications. Their physical properties 
determine powder flow characteristics, 
packing density, composite material 
properties, and the suitability of aggre-
gates for various purposes. While this 
variety of properties determines aggre-
gate behavior and suitability for use, 
many particle assays are restricted to 
particle size while other important in-
formation is lost. Micrograph analysis 
retains more particle characteristics, 
enabling more accurate prediction of 
the aggregate’s behavior.

TABLE 1 – GRAIN SIZE STATISTICS FROM SEM IMAGING METHODS [a]
Backscattered 
electron (BSE)

Electron backscatter 
diffraction (EBSD)

Mean, µm 0.72 0.74

Standard deviation, µm 0.35 0.41

Minimum, µm 0.04 0.04

Maximum, µm 2.46 3.23
[a] Data from measurements from four random fields of view.

TABLE 2 – TIME AND COSTS FOR BSE AND EBSD GRAIN SIZE ANALYSIS
Backscattered 
electron (BSE)

Electron backscatter 
diffraction (EBSD)

Collection time [a] 50 s/sample 10 h/sample

Samples per day [b] 240 2.4

Estimated SEM rate $200/h $200/h

Collection cost per sample [a] $20/sample $2000/sample
[a] Assuming five fields per sample. [b] Assuming 24 h SEM access and 5 min sample exchange time.

Fig. 2 — (a) Outline of complete identified grains (red) from BSE image; (b) outline of complete 
identified grains (white) from EBSD image; (c) grain size distribution from four BSE images; and 
(d) grain size distribution from four EBSD images

(d)(c)

(b)(a)
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PHYSICAL METHODS
Several techniques are available 

to characterize particle properties. For 
granular aggregate materials, the sim-
plest technique to determine particle 
size distribution is sieve analysis[4,5]. 
After sifting through meshes of gradu-
ated sizes, the percent-by-mass of each 
size range and a fineness modulus of 
the material trapped by each sieve is 
calculated. The technique requires 
moving samples offline for analysis and 
it is unable to provide more detailed 
shape information.

More sophisticated techniques 
such as acoustic emission avoid some 
of the limitations of sieve analysis. For 
example, acoustic emission is rapid, 
generates a continuous size distribu-
tion, and does not require removing 
samples from the test apparatus[6]. It 
can measure very small (micron range) 
particle sizes, but is limited to a maxi-
mum particle size. However, like sieve 
analysis, acoustic emission is limited to 
size measurements.

Dynamic light scattering, also 
known as photon correlation spectros-
copy[7], is used to make size measure-
ments (down to the nanometer range[8]) 
of particles in suspension. As particles 
diffuse through the suspension, they 
are illuminated by a laser beam and 
scatter light. Particle size is determined 
mathematically, which requires assum-
ing particular shape(s), so true shape 
information is lost.

MICROGRAPH-BASED 
PARTICLE ANALYSIS

The main benefit of using micro-
graphs to analyze particles over phys-
ical techniques is that particle shape 
information is not lost. Once particles 
are properly identified in a micrograph, 
many different shape descriptors such 
as aspect ratio and roughness can be 
reported. Using morphological image 
processing, more complicated analysis 
can be designed to report metrics such 
as number of satellite particles per par-
ent, amount of cracking per particle, 
and many others (Fig. 3). Another bene-
fit of micrograph analysis is that there is 
no minimum or maximum particle size 

that can be analyzed. This flexibility re-
quires the use of more powerful and ex-
pensive microscopes to achieve smaller 
resolutions. The basic image processing 
techniques are not scale dependent.

Micrograph particle analysis, un-
like physical techniques, does not re-
quire particles to be free to move 
relative to each other. Particles can be 
measured as long as they are distin-
guishable in the image, even if they are 
fixed in a concretion or composite ma-
terial, such as after the molding step 
of a metal injection molding process[9]. 
This enables further analysis of particle 
size and shape after production. In ad-
dition, measuring particle anisotropy 
across the image enables investigating 
nonuniform mechanical properties of 
the part.

Particle shape information is cru-
cial in powder-based additive manu- 
facturing techniques, as shape charac- 

teristics directly influence flow rate and 
packing density, which in turn influence 
mechanical and thermal properties of 
the final product[10].

REDUCING ERRORS IN 
GRAPHITE CLASSIFICATION

Micrograph analysis is performed 
to quantify inclusions and porosity in 
a material using standard reference 
micrograph charts. However, simply 
comparing micrographs to a chart is 
subjective and introduces human error, 
leading to wrongly approved and reject-
ed parts. Implementing point-count-
ing techniques can reduce some bias, 
but this increases the time needed to 
quantify a sample. Also, these tech-
niques do not eliminate the subjectiv-
ity inherent in deciding which feature 
class is under each point. Using a micro-
scope with a digital camera, the micro-
graph can be digitized as an image and 

Fig. 3 — Examples of particles and their features identified using Mipar’s morphological image 
processing. (a) Original image of particles with satellites; (b) segmented images (green = parent 
particles, purple = satellite particles); (c) original image of particles with cracks; and (d) segment-
ed images (green = particles, purple = cracks within those particles).

(a) (b)

(c) (d)
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quantified using a computer algorithm. 
For example, an algorithm can simulate 
a point count at every point on an im-
age and apply logic to subclassify ma-
terial phases, inclusions, and porosity, 
and generate relevant measurements, 
all in a matter of seconds. This method 
provides high speed, high accuracy, and 
correctable bias.

Technological advancements in 
microscopes and cameras open the 
possibility to automate many industry 
standards for micrograph analysis. Fur-
ther, advancements in computer algo-
rithms and the introduction of machine 
learning to this field increase problem 
solving capabilities. Mipar is working 
with industry to automate microstruc-
ture characterization following both in-
ternal and industry standards. Because 
variability exists in sample preparation, 
image capture method, and sample 
characteristics, algorithms are tailored 
to the user to accommodate inherent 
variability, but calibration relies on in-
dustry standards such as the ASTM A247 
nodularity standard test method[11].

ASTM A247 is an example of how 
a computer automated algorithm can 
reduce error and highlight shortcom-
ings of ambiguous wall chart analy-
sis. Section 10 of the standard states, 
“Nodularity is expressed by count-
ing the nodular particles and report-
ing the results as a percentage of the 
total amount of graphite present in 
the microstructure.” Some might find 
it unclear whether the nodular graph-
ite should be counted and reported 
as a count fraction, or if it should be 

point counted and reported as an area 
fraction.

This ambiguity is resolved by cal-
ibrating the computer algorithm to the 
standards chart at three points using 
both count fraction and area fraction 
(Fig. 4 and Table 3).

Root-mean-square error analy-
sis shows that area fraction interpre-
tation results in lower overall error 
(7.22%) than the count fraction method 
(9.23%), as shown in Table 4. The error 
analysis also points to inherent error in 

labeling the standards chart. While re-
viewing the area fraction results, chart 
micrographs at 20%, 30%, and 40% 
nodularity have the greatest absolute 
error from the algorithm. There are no 
obvious mistakes in the classification 
of the nodular graphite (Fig. 5), which 
highlights a subjective inaccuracy in the 
chart standard.

The most likely source of error 
is a combination of mislabeled chart 
values (as it is unlikely that the values 
are exactly at 10% intervals) and the 

TABLE 3 – ALGORITHM CALIBRATION TO ASTM A247 NODULAR GRAPHITE 
STANDARDS CHART

Chart Count fraction, % Area fraction, %

0 1.06 1.41

50 50.00 51.24

100 98.51 100.00

Root mean square error (RMSE), % 1.06 1.08

TABLE 4 – ALGORITHM ERROR ANALYSIS
Chart Count fraction, % Area fraction, %

0 1.06 1.41

10 20.00 17.02

20 23.64 32.40

30 42.34 39.55

40 38.89 53.60

50 50.00 51.21

60 48.45 55.04

70 54.74 64.38

80 75.90 82.00

90 73.13 84.53

100 98.51 100.00

Root mean square error (RMSE), % 9.23 7.22

(a) (b) (c)

Fig. 4 — Count fraction algorithm calibration results showing ambiguity in ASTM standard reference micrographs for estimating graphite 
nodularity in ductile iron (see Table 3): (a) 0% nodularity; (b) 50% nodularity; and (c) 100% nodularity (blue = non-nodular graphite and 
green = nodular graphite).
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subjective nature of micrograph analy-
sis. Additionally, the standard does not 
provide guidelines for whether graph-
ite on the boundary of the micrograph 
should be included in the nodularity 
classification. Nevertheless, the com-
puter algorithm can automate the mi-
crograph analysis while eliminating 
all random human error. The system-
atic errors present in automated anal-
ysis can be corrected for and further 
reduced by calibrating the algorithm 
within a specific range. For example, 
because ductile iron has a characteris-
tic nodularity of 80-100%, an automat-
ed solution can be further calibrated 
in this range, and then only applied to 
ductile irons going forward.

As the industry moves toward au-
tomation, there is a demand to mod-
ernize outdated standards to include 
guidelines and ground-truth datasets 
that would allow engineers to work 
more confidently in the field of mate-
rial development and characterization. 
~AM&P

For more information: John Sosa is 
CEO of Mipar Software, 5701 N. High 
St., Suite 204, Worthington, OH, 43085, 
614.407.4510, support@mipar.us, www.
mipar.us.
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Fig. 5 — Area fraction algorithm error analysis results showing ambiguity in ASTM standard reference micrographs for estimating graphite 
nodularity in ductile iron (see Table 4): (a) 20% nodularity; (b) 30% nodularity; and (c) 40% nodularity (blue = non-nodular graphite and 
green = nodular graphite).

(a) (b) (c)
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