

Microstructural Characterization

Simple. Uniquely Powerful.

Microstructural Characterization

Powder Process — Microstructure Part

Primary Challenges

Powder: Size and Shape

Powder

Melt Pools

Grains

Phases

Auto-Detection

Powder: Size and Shape

Melt Pools: Weld Tracks

Powder

Melt Pools

Grains

Phases

Original

Auto-Detection

Bounding Boxes

Melt pool dimensions can be measured

Melt Pools: Border Region Thickness

Melt Pools

User Traces Inside Region

Border Region "Snapped"

Thickness Measured

Border region detected with user oversight

Thickness variation measured and visualized

Melt Pools: Overlap Dimensions

Powder

Melt Pools

Phases

Porosity

(Minimal user interaction, but enough for oversight

Melt pool reconstructed for size and overlap measure

Overlap Measured

Grains: Size Analysis

Powder

Melt Pools

Phases

Porosity

Original

Detection

Grain Size Analysis

- Grain size statistics and histogram
- Powerful visualization: grains colored by size

Grains: Band Identification

Powder

Melt Pools

Grains

Phases

Original

Grain-Band Identification

Band widths can be measured

Phases: Laves in Inconel

Original Phase Detection Laves **Matrix** Phases Phase fraction can be measured Challenging ultra-fine laves phase detected Robust recipe ignores pores and defects

Porosity: Thin-Wall Parts

Porosity

Single recipe accurately measures porosity at each extreme

Perform analysis in batch

Porosity: Solid Parts

Porosity

Porosity: Pore Assignment Options

Powder

Melt Pools

Grains

Phase

Porosity

Majority Assignment

Pores assigned to border or bulk based on which they most belong to

Split Assignment

Pores assigned to border or bulk based on simple region intersection

Primary Challenges

Automating the Impossible: Grains with Many Twins

Model trained on 25 sub-images in 40 minutes on a GPU.

Model applied to new image in 2 seconds.

Automating the Impossible: Melt Pools with Minimal Contrast

Model trained on 16 sub-images in 60 minutes on a GPU.

Model applied to new image in 3 seconds.

Primary Challenges

mipar.us

